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Q & A Session 09.06.2020
Stellar Clustering

The Virial Theorem

The escape velocity from a virialised star cluster

Star clusters are groups of stars which typically contain a few hundred thousand members. Con-
sider a star cluster of average radius 〈R〉, which consists of N identical stars of mass m.

Calculate the escape velocity of a star from this cluster.

The escape velocity of a star from a cluster is the velocity at which the star's kinetic energy exactly 
balances its gravitational potential energy, i.e. it is the minimal energy required for the star to 
become unbound from the cluster. 

The total force on a star in the cluster is the sum of the two-body gravitational interactions with all 
the other stars in the cluster; therefore, the gravitational potential energy of a typical star is given 
by the sum of the two-particle potential energies for all the stars in the cluster.

 Assuming that the cluster consists of n identical stars of mass m, which have a mean separation 
comparable to the cluster radius 〈R〉, the total energy of a star in the cluster is given by:

T + V =
1

2
m v2 - (N - 1)

G m2

〈R〉
(1)

The minimal velocity needed to escape the cluster's gravitational pull is obtained by setting the 
total energy to zero i.e.

T + V =
1

2
m vesc

2 - (N - 1)
G m2

〈R〉
= 0 (2)

The escape velocity of a star in the cluster is therefore given by

vesc = 2 (N - 1)
G m

〈R〉
(3)

Escape velocity

Assuming that the cluster is in Virial equilibrium, relate the escape velocity to the characteristic 
velocity of stars inside the cluster which is given by v = 〈v2〉t , where 〈.〉t denotes a time 



average.

When a star cluster is in Virial equilibrium, the inward gravitational force is balanced by the motions 
of the stars, which implies a relation between the time averaged gravitational potential energy V  
and the time averaged kinetic energy T  of the system. This relation is the Virial Theorem, which is 
given by

2 T + V = 0 (4)

We assume that the star cluster consists of N identical stars of mass m. The mean separation 
between two stars will be of the order of the mean cluster radius 〈R〉. The total gravitational poten-
tial energy of the cluster is the sum of all the two body gravitational potential energies. Noting that 
there are N(N - 1) /2 possible pair interactions, gives the total gravitational potential energy of the 
cluster as

V =
N (N - 1)

2

G m2

〈R〉
(5)

The total kinetic energy of the star cluster is the sum of the single star kinetic energies; denoting the 
time averaged stellar velocity squared as 〈v2〉t gives a total kinetic energy of

T =
1

2
N m v2

t
(6)

Inserting these two expressions into Eq. 4 allows us to write the time averaged squared stellar 
velocity as 

v2
t
=
(N - 1)

2

Gm

〈R〉
(7)

Using Eq. 7 we can write the escape velocity of a star, derived in Eq. 3, as

vesc = 2 v2
t

(8)

Due to two-body encounters stars will regularly be accelerated to speeds comparable to the escape 
velocity. This means that star clusters gradually evaporate on timescales of tevap ≃ 1010 years.

The Coma cluster

A galaxy cluster is a structure which consists of hundreds to thousands of galaxies bound together 
by gravity.In 1933, Fritz Zwicky studied clusters of galaxies and especially the Coma cluster.  In  his 
paper (Die Rotverschiebung von extragalaktischen Nebeln, Zwicky, F., Helvetica PhysicaActa,  Vol.  
6,  p.  110-127) he calculated the mass of the Coma cluster in two different ways and compared the 
two estimates.The aim of this exercise is to repeat Zwicky’s calculations using the values given in 
his original paper.

1. Method

The first method to estimate the mass of the Coma cluster is to set it equal to the total visible 
matter.  Assuming that the Coma cluster contains NGal ≃ 800 galaxies of average stellar mass of 
Mstar ≃ 109 M⊙,  make an estimate for the mass of the cluster.

We can get a rough estimate for the mass of the Coma cluster by adding up all the matter we see. At 
the time Zwicky published his paper, it was believed that the cluster consisted of NGal ≃ 800 galaxies 
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of average mass of MGal ≃ 109 M⊙. This allows us to estimate the total visible mass of the Coma 
cluster as

Mvis = NGal MGal ≃ 8 × 1011 M
⊙

(9)

2. Method

A  second  method  to  estimate  the  mass  of  the  Coma  cluster  is  to  infer  its  mass through  the  
gravitational  force  it  exerts.   Assuming  that  the  Coma  cluster  is  in Virial equilibrium,  has an 
average radius of 〈R〉 ≃ 0.3 Mpc and a radial velocity dispersion 〈σr

2〉 ≃ 1000 km s-1 estimate 

the mass of the cluster.

Hint: Comment on why it is sufficient to know the velocity dispersion of Coma to estimate its 
dynamical mass.  You can then determine the total velocity dispersion from the radial velocity 
dispersion by assuming that the galaxy motions are isotropic

Instead of adding up all the mass we see, we can also estimate the cluster mass by considering its 
gravitational effect. Assuming that the Coma cluster is in Virial equilibrium, we can use Eq. 7 to 
obtain a rough estimate of the mass which gives rise to the observed galaxy velocities, called the 
dynamical mass Mdyn

Mdyn ≃ (N - 1) m =
2 〈R〉 〈v2〉t

G
(10)

We can set the time averaged squared galaxy velocity 〈v2〉t equal to the velocity dispersion 〈σ2〉t 
because the mean galaxy velocity in the cluster is the velocity of the cluster relative to the observer 
and it does not support the system from gravitational collapse. We further assume that the instanta-
neous velocity dispersion is similar to its time averaged value.

Experimentally it is only possible to obtain measurements of the radial velocity dispersion, because 
measuring tangential velocities is too time-consuming. Assuming that the motion of galaxies in 
Coma is isotropic means that there is nothing special about the radial direction and so the velocity 
dispersion should be equal for the other two directions, i.e.

σ2
t
= σr

2
t
+ σθ

2 
t
+ σϕ

2 
t
= 3 σr

2
t (11)

Inserting the numerical values given in the problem sheet gives

Mdyn ≃ 4.4 × 1014 M
⊙

(12)

What do you conclude by comparing these two mass estimates?

We see that the two results differ by almost 3 orders of magnitude. It is highly improbable that 
either of our mass estimates is wrong by such a large amount. We are therefore led to the assump-
tion that most of the mass which makes up the Coma cluster is not visible but only makes itself felt 
through gravitational interaction.

Problem:  The two-point correlation function

Introduction

It is well known that the distribution of galaxies on the sky is far from uniform. Qualitatively, the 
non-uniformity has been described in terms such as clusters, clusters of clusters, filaments, voids, 
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etc. Large-scale surveys, where the positional information (coordinates on the sky) have been 
complemented with depth information from redshifts, have mapped the 3D structure of this distri-
bution in exquisite detail. In this assignment we shall however only deal with the projected 2D (or 
surface) distribution of galaxies on the sky.

Whether we want to investigate the 3D or 2D distribution of galaxies (or of any other kind of object), 
a fundamental problem is how to quantify the non-uniformity. Whereas a completely uniform 
(random) distribution is characterized by a single number (the mean density of objects, i.e., per unit 
surface or unit volume), there are an infinite number of possible ways in which a non-uniform 
distribution could be quantified (modelled, or parameterized). The two-point angular correlation 
function w(θ) is one, very useful, way to do this. It

Problem

In this assignment, six different datasets will be used. Each dataset is a list of 9404 positions (x and y 
coordinates) of points in a square field. The coordinates have been scaled such that 0 < x < 1000 and 
0 < y < 1000. The datasets can be retrieved from the web page as text files P1data01.txt, 
P1data02.txt, etc.

One of the datasets contains the measured positions of galaxies in the Hubble Ultra Deep Field 
(HUDF) [1], as observed in the i (F775W) band, and therefore exhibits a certain degree of clustering 
on some scales. The other five datasets were randomly generated with a uniform distribution, and 
therefore by definition has no clustering.
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GraphicsGrid[Partition[Table[tmp = Import[

"C:\\Users\\roell\\OneDrive\\Dokumente_Uni\\Projekte\\Teaching\\Vorlesung\\Star

Formation Ffm\\SS 20\\Q & A

Sessions\\09.06.2020\\P1data0" <> i <> ".txt", "Table"];

ListPlot[tmp, Frame → True, FrameLabel → None, AspectRatio → 1,

PlotLabel → "Data set " <> i], {i, ToString /@ Range[6]}], 3], ImageSize → Full]
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The task is to estimate the two-point correlation function w(θ) for each dataset and hence decide 
which is the galaxy dataset. The angle θ (expressed in the same unit as the x and y coordinates) 
ranges from 0 to ≃1400 units.

It is recommended to estimate w(θ) only for θ ≤ θmax ≃ 1000, since for larger separations there are 
too few pairs to get reliable statistics.

To different estimators should be used and compared: the `natural' estimator(w1) and the Landy & 
Szalay estimator (w3). Once the galaxy field has been identified, describe how it deviates from a 
uniform distribution on different scales.

Theory

Details (including the derivation of w3) can be found in the paper by Landy & Szalay [2]. For conve-
nience, the formulae for w1 and w3 are given hereafter.

Clustering increases the number of close pairs; w(θ) quantifies this increase as a function of galaxy 
separation θ.
It is the fractional increase relative to a random distribution in the probability δP of finding objects 
in each of two solid angle elements δΩ1 and δΩ2 separated by angle θ:

δP = ζ2[1 +w(θ)]δΩ1 δΩ2
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where ζ  is the object surface density.

The Figure shows two generated sky distributions, one (upper left) simulating low-contrast galaxy 
clusters in a regular grid on a random background, the other (upper right) simulating galaxy clus-
ters on a background with large-scale structure in the form of a quadrupole. 

The first ‘sky’ consists of a uniform random background of 8500 points, with a further 1500 points in 
25 equal clusters of Gaussian width 0.4° placed on a uniform 2° by 2° grid across the area. The 
second has a background of 10 000 points generated from a power-spectrum representation of the 
sky with signal in one term only: ℓ = 2. Another 2000 points were added in 25 equal ‘clusters’ of 
Gaussian width 0.1° at random positions. 

Although the eye struggles to discern any features in the first sky, the two-point correlation func-
tion shows a strong signal at small θ describing the clusters themselves, and a resurgent signal at 
larger separations due to the 2° by 2° grid on which the clusters were placed.

Both the quadrupole and the clusters are very evident in the second sky, and the correspondingly 
stronger w(θ) again shows two components; the signal at the smallest separations describes the 
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galaxy clusters while the signal on degree scales is due to the dipole.

The dataset under investigation (i.e., one of P1data*.txt) is denoted D and contains n = 9404 points. 
The two-point correlation function is obtained by comparing the distribution of angular separa-
tions in D with the corresponding distribution of separations in a random set, called R, and which 
contains r points. In general r and n may be different, but it is often convenient to choose r = n.

The angular separation of two points i, j is θij = (xi - xj)2 + (yi - yj)2 . The total number of pairs in D 

and R is n(n - 1) /2 and r(r - 1) /2, respectively. To characterize the clustering at the angular scale θ, 
count the number of pairs in D and R that have separations in the interval θ ± δθ /2. Let DD and RR 
be the number of such pairs in D and R, respectively. The `natural' estimator of w(θ) is

w1 =

DD
n(n-1)/2

- RR
r(r-1)/2

RR
r(r-1)/2

=
r(r - 1)

n(n - 1)

DD

RR
- 1

To reduce the effect of statistical fluctuations in RR it is advisable to generate several (say, 10) 
random fields, and use the average number 〈RR〉 in the above formula. 

As shown by Landy & Szalay [2], w1 is biased (i.e., it deviates systematically from 0 even when there 
is no clustering). A much better estimate is obtained by using also the cross-correlation statistic DR, 
that is the number of pairs in the separation interval θ ± δθ /2, with one point taken from D and the 
other from R. There are n×r such pairs. The Landy-Szalay estimator is then computed as

w3 =

DD
n(n-1)/2

- 2 DR
n r

+ RR
r(r-1)/2

RR
r(r-1)/2

=
r(r - 1)

n(n - 1)

DD

RR
-
(r - 1)

n

DR

RR
+ 1

It is advisable to replace RR and DR by the mean counts from several realizations of R.

In the actual calculations, DD, RR, and DR should be arrays of length m ( ≃ 100), counting the num-
ber of pairs in m bins of equal width. For example, DD(1) is the number of pairs with 0 < θ ≤ δθ, 
DD(2) the number of pairs with δθ < θ ≤ 2δθ, and so on, up to DD(n), which is the number of pairs 
with (m - 1)δθ < θ ≤mδθ = θmax. Here, δθ = θmax /m is the bin width.

As this problem is computationally rather intensive, you should be careful so that you do not repeat 
calculations unnecessarily. This is often a question of doing nested loops in the right order. For 
example, rather than looping through the bins and checking which pairs fall in that bin, it is better 
to loop through all the pairs only once, calculate the index of the bin to which the pair belongs, and 
add 1 to the count in that bin.

References

◼ Beckwith S.V.W., Stiavelli M., Koekemoer A.M., et al., 2006: The Hubble Ultra Deep Field, AJ 132, 
1729

◼ Landy S.D., Szalay A.S., 1993: Bias and variance of angular correlation functions, ApJ 412, 64

◼ Wall J.V., Jenkins C.R., 2012: Practical Statistics for Astronomers (2nd ed.), Cambridge University 
Press
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Functions

In[ ]:= Length /@ {p1, p2, p3, p4, p5, p6}

Out[ ]= {0, 0, 0, 0, 0, 0}

In[ ]:= len = Length[p1];

In[ ]:=

Clear[randomField];

randomField[len_ : len, ranges_ : {{0, 1000}, {0, 1000}}] := Module[{n, x, y},

x = RandomReal[ranges[[1]], len];

y = RandomReal[ranges[[2]], len];

Transpose[{RandomSample[x], RandomSample[y]}]]

In[ ]:= findDivisions[{x1_, x2_}, n_] := FindDivisions[Evaluate[-Log[10, #] & /@ {x1, x2}], n]

In[ ]:= findDivisions[{0.001, 1000}, 20]
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In[ ]:= findDivisions10-3, 1000, 30
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In[ ]:= getBins[bins_] := Partition[FindDivisions[{0, 1000}, bins], 2, 1]

In[ ]:= Mean /@ Partition[FindDivisions[{0, 1000}, 100], 2, 1]

Out[ ]= {5, 15, 25, 35, 45, 55, 65, 75, 85, 95, 105, 115, 125, 135, 145, 155, 165, 175, 185,

195, 205, 215, 225, 235, 245, 255, 265, 275, 285, 295, 305, 315, 325, 335, 345, 355,

365, 375, 385, 395, 405, 415, 425, 435, 445, 455, 465, 475, 485, 495, 505, 515,

525, 535, 545, 555, 565, 575, 585, 595, 605, 615, 625, 635, 645, 655, 665, 675,

685, 695, 705, 715, 725, 735, 745, 755, 765, 775, 785, 795, 805, 815, 825, 835,

845, 855, 865, 875, 885, 895, 905, 915, 925, 935, 945, 955, 965, 975, 985, 995}
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In[ ]:= Clear[computeDistanceBins];

Options[computeDistanceBins] =

{"BinNumber" → 30, "MinDistance" → 0, "MaxDistance" → 1000, "Scaling" → "Linear"};

computeDistanceBins[data_List, opts : OptionsPattern[]] :=

computeDistanceBins[data, opts] = Module{dmD, dmR, upperR, upperD,

binsD, binsR, n, r, maxDistance, minDistance, binnum, binArgs},

binnum = OptionValue["BinNumber"];

maxDistance = OptionValue["MaxDistance"];

minDistance = OptionValue["MinDistance"];

IfOptionValue["Scaling"] ⩵ "Linear",

binArgs = minDistance, maxDistance,
maxDistance - minDistance

binnum
,

binArgs = findDivisionsMax10-3, minDistance, maxDistance, binnum;

n = Length[data];

dmD = DistanceMatrix[data, data];

upperD = Table[dmD[[i, i + 1 ;; n]], {i, 1, n - 1}] // Flatten;

binsD = BinCounts[upperD, binArgs]

computeDistanceBins[data1_List, data2_List, opts : OptionsPattern[]] :=

computeDistanceBins[data1, data2, opts] =

Module{dmDR, upperDR, binsDR, n, r, maxDistance, minDistance, binnum, binArgs},

binnum = OptionValue["BinNumber"];

maxDistance = OptionValue["MaxDistance"];

minDistance = OptionValue["MinDistance"];

IfOptionValue["Scaling"] ⩵ "Linear",

binArgs = minDistance, maxDistance,
maxDistance - minDistance

binnum
,

binArgs = findDivisionsMax10-3, minDistance, maxDistance, binnum;

n = Length[data1];

r = Length[data2];

dmDR = DistanceMatrix[data1, data2];

upperDR = dmDR // Flatten;

binsDR = BinCounts[upperDR, binArgs]

In[ ]:= FindDivisions0, 1000,
1000 - 0

30
, 30

Out[ ]= 0,
100

3
,
200

3
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,
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3
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3
,
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3
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3
,
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3
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3
,
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3
, 600,
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3
,
2000

3
, 700,
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3
,
2300

3
, 800,

2500

3
,
2600

3
, 900,

2800

3
,
2900

3
, 1000
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In[ ]:= Clear[w1]

Options[w1] = {"ShowBins" → False, "RandomFieldNumber" → 10,

"BinNumber" → 30, "XRange" → {0, 1000}, "YRange" → {0, 1000}, "MinDistance" → 0,

"MaxDistance" → 1000, "ComparisonField" → {}, "Scaling" → "Linear"};

w1[data_, opts : OptionsPattern[]] := Module{randomSets, binsD, binnum,

binsR, n = Length[data], r, maxDistance = 1000, minDistance = 0, binArgs},

binnum = OptionValue["BinNumber"];

IfOptionValue["Scaling"] ⩵ "Linear",

binArgs = Mean /@ PartitionFindDivisions

minDistance, maxDistance,
maxDistance - minDistance

binnum
, binnum, 2, 1,

binArgs = Mean /@ PartitionfindDivisionsMaxminDistance, 10-3, maxDistance,

binnum, 2, 1;

binsD = computeDistanceBins[data, Sequence @@ FilterRules[

{opts}, Options[computeDistanceBins]]];

IfOptionValue["ComparisonField"] ⩵ {},

r = n;

randomSets = Table[randomField[n, {OptionValue["XRange"], OptionValue["YRange"]}],

{OptionValue["RandomFieldNumber"]}];

binsR = Mean /@ TransposecomputeDistanceBins[#, Sequence @@

FilterRules[{opts}, Options[computeDistanceBins]]] & /@ randomSets,

r = Length[OptionValue["ComparisonField"]];

binsR = computeDistanceBins[OptionValue["ComparisonField"],

Sequence @@ FilterRules[{opts}, Options[computeDistanceBins]]];

IfOptionValue["ShowBins"], 
r r - 1 binsD

n n - 1 binsR
- 1., {binsD, binsR},

TransposebinArgs,
r r - 1 binsD

n n - 1 binsR
- 1.
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In[ ]:= Clear[w3]

Options[w3] = {"ShowBins" → False, "RandomFieldNumber" → 10, "BinNumber" → 30,

"XRange" → {0, 1000}, "YRange" → {0, 1000}, "ComparisonField" → {},

"MinDistance" → 0, "MaxDistance" → 1000, "Scaling" → "Linear"};

w3[data_, opts : OptionsPattern[]] := Module{randomSets, binsD, binsR, binnum,

binsDR, n = Length[data], r, maxDistance = 1000, minDistance = 0, binArgs},

binnum = OptionValue["BinNumber"];

IfOptionValue["Scaling"] ⩵ "Linear",

binArgs = Mean /@ PartitionFindDivisions

minDistance, maxDistance,
maxDistance - minDistance

binnum
, binnum, 2, 1,

binArgs = Mean /@ PartitionfindDivisionsMaxminDistance, 10-3, maxDistance,

binnum, 2, 1;

binsD = computeDistanceBins[data, Sequence @@ FilterRules[

{opts}, Options[computeDistanceBins]]];

IfOptionValue["ComparisonField"] ⩵ {},

r = n;

randomSets = Table[randomField[n, {OptionValue["XRange"], OptionValue["YRange"]}],

{OptionValue["RandomFieldNumber"]}];

binsR = Mean /@ TransposecomputeDistanceBins[#, Sequence @@

FilterRules[{opts}, Options[computeDistanceBins]]] & /@ randomSets,

r = Length[OptionValue["ComparisonField"]];

binsR = computeDistanceBins[OptionValue["ComparisonField"],

Sequence @@ FilterRules[{opts}, Options[computeDistanceBins]]];

binsDR = Mean /@ TransposecomputeDistanceBins[data, #, Sequence @@

FilterRules[{opts}, Options[computeDistanceBins]]] & /@ randomSets;

IfOptionValue["ShowBins"],


r r - 1

n n - 1
binsD  binsR -

r - 1

n

binsDR

binsR
+ 1., {binsD, binsR, binsDR},

TransposebinArgs,
r r - 1

n n - 1
binsD  binsR -

r - 1

n

binsDR

binsR
+ 1.
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In[ ]:= Clear[wLS]

Options[wLS] = {"ShowBins" → False, "RandomFieldNumber" → 10, "BinNumber" → 30,

"XRange" → {0, 1000}, "YRange" → {0, 1000}, "ComparisonField" → {},

"MinDistance" → 0, "MaxDistance" → 1000, "Scaling" → "Linear"};

wLS[data_, opts : OptionsPattern[]] := Module{randomSets, binsD, binsR, binnum,

binsDR, n = Length[data], r, maxDistance = 1000, minDistance = 0, binArgs},

binnum = OptionValue["BinNumber"];

IfOptionValue["Scaling"] ⩵ "Linear",

binArgs = Mean /@ PartitionFindDivisions

minDistance, maxDistance,
maxDistance - minDistance

binnum
, binnum, 2, 1,

binArgs = Mean /@ PartitionfindDivisionsMaxminDistance, 10-3, maxDistance,

binnum, 2, 1;

binsD = computeDistanceBins[data, Sequence @@ FilterRules[{opts},

Options[computeDistanceBins]]]  n n - 1  2;

IfOptionValue["ComparisonField"] ⩵ {},

r = n;

randomSets = Table[randomField[n, {OptionValue["XRange"], OptionValue["YRange"]}],

{OptionValue["RandomFieldNumber"]}];

binsR = Mean /@ TransposecomputeDistanceBins[#, Sequence @@ FilterRules[{opts},

Options[computeDistanceBins]]] & /@ randomSets  r r - 1  2,

r = Length[OptionValue["ComparisonField"]];

binsR = computeDistanceBins[OptionValue["ComparisonField"],

Sequence @@ FilterRules[{opts}, Options[computeDistanceBins]]]  r r - 1  2;

binsDR = Mean /@ TransposecomputeDistanceBins[data, #, Sequence @@ FilterRules[

{opts}, Options[computeDistanceBins]]] & /@ randomSets  (r * n);

IfOptionValue["ShowBins"], 
binsD - 2 binsDR + binsR

binsR
, {binsD, binsR, binsDR},

TransposebinArgs,
binsD - 2 binsDR + binsR

binsR
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Example

In[ ]:= set1 = Flatten[Outer[List, {0, 1, 2, 3}, {0, 1, 2, 3}], 1]

set2 = Flatten[Outer[List, {0, 1, 2, 3} + .1, {0, 1, 2, 3}], 1]

ListPlot[{set1, set2}, AspectRatio → 1, Frame → True]

Out[ ]= {{0, 0}, {0, 1}, {0, 2}, {0, 3}, {1, 0}, {1, 1}, {1, 2},

{1, 3}, {2, 0}, {2, 1}, {2, 2}, {2, 3}, {3, 0}, {3, 1}, {3, 2}, {3, 3}}

Out[ ]= {{0.1, 0}, {0.1, 1}, {0.1, 2}, {0.1, 3}, {1.1, 0}, {1.1, 1}, {1.1, 2}, {1.1, 3},

{2.1, 0}, {2.1, 1}, {2.1, 2}, {2.1, 3}, {3.1, 0}, {3.1, 1}, {3.1, 2}, {3.1, 3}}

Out[ ]=

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

In[ ]:= DistanceMatrix[set1] // MatrixForm

Out[ ]//MatrixForm=

0 1 2 3 1 2 5 10 2 5 2 2 13 3 10 13

1 0 1 2 2 1 2 5 5 2 5 2 2 10 3 10

2 1 0 1 5 2 1 2 2 2 5 2 5 13 10 3

3 2 1 0 10 5 2 1 13 2 2 5 2 3 2 13 10

1 2 5 10 0 1 2 3 1 2 5 10 2 5 2

2 1 2 5 1 0 1 2 2 1 2 5 5 2 5

5 2 1 2 2 1 0 1 5 2 1 2 2 2 5 2

10 5 2 1 3 2 1 0 10 5 2 1 13 2 2 5

2 5 2 2 13 1 2 5 10 0 1 2 3 1 2 5

5 2 5 2 2 2 1 2 5 1 0 1 2 2 1 2

2 2 5 2 5 5 2 1 2 2 1 0 1 5 2 1

13 2 2 5 2 10 5 2 1 3 2 1 0 10 5 2

3 10 13 3 2 2 5 2 2 13 1 2 5 10 0 1 2

10 3 10 13 5 2 5 2 2 2 1 2 5 1 0 1

13 10 3 10 2 2 5 2 5 5 2 1 2 2 1 0

3 2 13 10 3 13 2 2 5 2 10 5 2 1 3 2 1
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In[ ]:= DistanceMatrix[set1] // N // Flatten // Tally

Out[ ]= {{0., 16}, {1., 48}, {2., 32}, {3., 16}, {1.41421, 36},

{2.23607, 48}, {3.16228, 24}, {2.82843, 16}, {3.60555, 16}, {4.24264, 4}}

In[ ]:= computeDistanceBins[set1, "BinNumber" → 5, "MinDistance" → 0, "MaxDistance" → 5]

computeDistanceBins[set2, "BinNumber" → 5, "MinDistance" → 0, "MaxDistance" → 5]

Out[ ]= {0, 42, 48, 28, 2}

Out[ ]= {0, 42, 48, 28, 2}

w1 =

DD
n(n-1)/2

- RR
r(r-1)/2

RR
r(r-1)/2

=
r(r - 1)

n(n - 1)

DD

RR
- 1

In[ ]:= computeDistanceBinsset1, "BinNumber" → 30,

"MinDistance" → 10-3, "MaxDistance" → 5, "Scaling" -> "Log"

Out[ ]= {0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 0, 18, 0, 0, 16, 24, 0, 0, 8}

In[ ]:= findDivisions10-3, 5, 30

Out[ ]= -
4

5
, -

3

5
, -

2

5
, -

1

5
, 0,

1

5
,
2

5
,
3

5
,
4

5
, 1,

6

5
,
7

5
,
8

5
,
9

5
, 2,

11

5
,
12

5
,
13

5
,
14

5
, 3

In[ ]:= w1[set1, "XRange" → {0, 3}, "YRange" → {0, 3}, "BinWidth" → 1,

"MinDistance" → 0, "MaxDistance" → 5, "ComparisonField" → set2] // Quiet

{25, 75, 125, 175, 225, 275, 325, 375, 425, 475, 525, 575, 625, 675, 725, 775, 825, 875, 925, 975}

Out[ ]= Transpose[{{25, 75, 125, 175, 225, 275, 325,

375, 425, 475, 525, 575, 625, 675, 725, 775, 825, 875, 925, 975},

{Indeterminate, Indeterminate, Indeterminate, Indeterminate, Indeterminate,

Indeterminate, 0., Indeterminate, 0., Indeterminate, Indeterminate,

Indeterminate, 0., 0., Indeterminate, Indeterminate, 0., Indeterminate, 0.,

Indeterminate, Indeterminate, 0., Indeterminate, Indeterminate, Indeterminate,

0., Indeterminate, Indeterminate, Indeterminate, Indeterminate}}]
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In[ ]:= SeedRandom[1]

w1[set1, "XRange" → {0, 3}, "YRange" → {0, 3},

"BinWidth" → .1, "MinDistance" → 0, "MaxDistance" → 5] // Quiet

ListPlot[

%]

Out[ ]= {-1., -1., -1., -1., -1., -1., -1., -1., -1., -1., 3.61538, -1., -1., -1., 2.33333,

-1., -1., -1., -1., -1., 3., -1., 3.89796, -1., -1., -1., -1., -1., 7., -1.,

12.3333, 29., -1., -1., -1., Indeterminate, 79., Indeterminate, -1., Indeterminate,

Indeterminate, Indeterminate, ComplexInfinity, Indeterminate, Indeterminate,

Indeterminate, Indeterminate, Indeterminate, Indeterminate, Indeterminate}

Out[ ]=

10 20 30

2

4

6

8
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In[ ]:= SeedRandom[1]

rand1 = randomField[10, {{0, 3}, {0, 3}}];

rand2 = Join[randomField[10, {{0, 3}, {0, 3}}], randomField[10, {{1, 2}, {1, 2}}]];

ListPlot[rand1, AspectRatio → 1, Frame → True]

ListPlot[rand2, AspectRatio → 1, Frame → True]

Out[ ]=

0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Out[ ]=

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

2.5

In[ ]:= computeDistanceBins[rand1, "BinNumber" → 15, "MinDistance" → 0, "MaxDistance" → 5]

computeDistanceBins[rand2, "BinNumber" → 15, "MinDistance" → 0, "MaxDistance" → 5]

Out[ ]= {2, 6, 5, 4, 4, 8, 5, 8, 3, 0, 0, 0, 0, 0, 0}

Out[ ]= {18, 34, 46, 32, 31, 19, 7, 1, 2, 0, 0, 0, 0, 0, 0}
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In[ ]:= SeedRandom[1]

w1[rand1, "XRange" → {0, 3}, "YRange" → {0, 3},

"BinNumber" → 25, "MinDistance" → 0, "MaxDistance" → 5] // Quiet

ListPlot[%, Frame → True]

Out[ ]= {{20, 2.33333}, {60, -1.}, {100, 1.38095}, {140, -0.0909091}, {180, -0.210526},

{220, 0.}, {260, -0.545455}, {300, -0.487179}, {340, 0.190476}, {380, 0.},

{420, 0.025641}, {460, -0.677419}, {500, 0.851852}, {540, 1.17391}, {580, -0.230769},

{620, -1.}, {660, -1.}, {700, Indeterminate}, {740, Indeterminate},

{780, Indeterminate}, {820, Indeterminate}, {860, Indeterminate},

{900, Indeterminate}, {940, Indeterminate}, {980, Indeterminate}}

Out[ ]=

0 100 200 300 400 500 600

-1.0

-0.5

0.0
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2.5
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In[ ]:= SeedRandom[1]

w1[rand2, "XRange" → {0, 3}, "YRange" → {0, 3},

"BinNumber" → 30, "MinDistance" → 0, "MaxDistance" → 5] // Quiet

ListPlot[%]

w3[rand2, "XRange" → {0, 3}, "YRange" → {0, 3},

"BinNumber" → 30, "MinDistance" → 0, "MaxDistance" → 5] // Quiet;

ListPlot[

%]

30

Out[ ]= 
50

3
, 2.33333, {50, 0.746032}, 

250

3
, 1.02128, 

350

3
, 0.442308, {150, 0.794872},


550

3
, 1.23214, 

650

3
, 0.785714, {250, -0.0977444}, 

850

3
, 0.14094,


950

3
, -0.0728477, {350, 0.0687023}, 

1150

3
, -0.673203, 

1250

3
, -0.663866,

{450, -0.76}, 
1450

3
, -0.911504, 

1550

3
, -1., {550, -0.761905}, 

1750

3
, -0.767442,


1850

3
, -1., {650, -1.}, 

2050

3
, -1., 

2150

3
, -1., {750, -1.}, 

2350

3
, Indeterminate,


2450

3
, Indeterminate, {850, Indeterminate}, 

2650

3
, Indeterminate,


2750

3
, Indeterminate, {950, Indeterminate}, 

2950

3
, Indeterminate

Out[ ]=

100 200 300 400 500 600 700

-1.0

-0.5

0.5

1.0

1.5

2.0

2.5

Out[ ]=

200 400 600 800

-0.5

0.5

1.0

1.5

2.0

2.5
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In[ ]:= w3rand2, "ShowBins" → False, "XRange" → {0, 3}, "YRange" → {0, 3},

"BinNumber" → 30, "MinDistance" → 10-3, "MaxDistance" → 5 // Quiet

Out[ ]= 
50

3
, 4.33846, {50, 1.01471}, 

250

3
, 1.32078, 

350

3
, 0.211712, {150, 0.490942},


550

3
, 0.120161, 

650

3
, -0.428409, {250, -1.1663}, 

850

3
, -0.350904,


950

3
, -0.393077, {350, -0.313929}, 

1150

3
, -0.391154, 

1250

3
, 0.310385,

{450, 0.0254386}, 
1450

3
, -0.138554, 

1550

3
, 0.02625, {550, 0.451724}, 

1750

3
, 0.39,


1850

3
, 0.502381, {650, 0.720588}, 

2050

3
, 0.366667, 

2150

3
, 0.864286, {750, 1.},


2350

3
, 1., 

2450

3
, Indeterminate, {850, Indeterminate}, 

2650

3
, Indeterminate,


2750

3
, Indeterminate, {950, Indeterminate}, 

2950

3
, Indeterminate

w1 =
r(r - 1)

n(n - 1)

DD

RR
- 1

In[ ]:= wLSrand2, "XRange" → {0, 3}, "YRange" → {0, 3},

"BinNumber" → 30, "MinDistance" → 10-3, "MaxDistance" → 5 // Quiet

ListPlot[

%]

Out[ ]= 
50

3
,
497

120
, 50,

313

196
, 

250

3
,
491

415
, 

350

3
,
144

515
, 150,

1043

2220
,


550

3
, -

101

990
, 

650

3
, -

287

780
, 250, -

2639

2960
, 

850

3
, -

1871

2500
,


950

3
, -

689

3560
, 350, -

82

385
, 

1150

3
, -

843

2660
, 

1250

3
,

883

2980
,

450, -
38

565
, 

1450

3
, -

13

384
, 

1550

3
, -

11

1680
, 550,

151

310
, 

1750

3
, -

4

155
,


1850

3
,

79

440
, 650,

53

300
, 

2050

3
,
71

90
, 

2150

3
,
11

30
, {750, 1}, 

2350

3
, 1,


2450

3
, Indeterminate, {850, Indeterminate}, 

2650

3
, Indeterminate,


2750

3
, Indeterminate, {950, Indeterminate}, 

2950

3
, Indeterminate

Out[ ]=

200 400 600 800

-1

1

2

3
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Large Data Sets

In[ ]:= $dir = "C:\\Users\\roell\\OneDrive\\Dokumente_Uni\\Projekte\\Teaching\\Vorlesung\\Star

Formation Ffm\\SS 20\\Q & A Sessions\\09.06.2020";

p1 = Import[FileNameJoin[{$dir, "P1data01.txt"}], "Table"];

p2 = Import[FileNameJoin[{$dir, "P1data02.txt"}], "Table"];

p3 = Import[FileNameJoin[{$dir, "P1data03.txt"}], "Table"];

p4 = Import[FileNameJoin[{$dir, "P1data04.txt"}], "Table"];

p5 = Import[FileNameJoin[{$dir, "P1data05.txt"}], "Table"];

p6 = Import[FileNameJoin[{$dir, "P1data06.txt"}], "Table"];

Out[ ]=

1 2 3 4 5 6
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In[ ]:= ListLinePlot[{

Transpose[{Mean /@ getBins[5], computeDistanceBins[p1, 5]}],

Transpose[{Mean /@ getBins[10], computeDistanceBins[p1, 10]}],

Transpose[{Mean /@ getBins[20], computeDistanceBins[p1, 20]}]},

PlotLegends → {5, 10, 20}]

Out[ ]=

200 400 600 800 1000

200000

400000

600000

800000

1.0×106

1.2×106

5

10

20

In[ ]:= ListLinePlot[{

Transpose[{Mean /@ getBins[5], computeDistanceBins[p2, 5]}],

Transpose[{Mean /@ getBins[10], computeDistanceBins[p2, 10]}],

Transpose[{Mean /@ getBins[20], computeDistanceBins[p2, 20]}]},

PlotLegends → {5, 10, 20}]

Out[ ]=

200 400 600 800 1000

200000

400000

600000

800000

1.0×106

1.2×106

5

10

20
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In[ ]:= SeedRandom[1];

w11 = w1[p1, "RandomFieldNumber" → 10];

SeedRandom[1];

w31 = w3[p1, "RandomFieldNumber" → 10];

SeedRandom[1];

w12 = w1[p2, "RandomFieldNumber" → 10];

SeedRandom[1];

w32 = w3[p2, "RandomFieldNumber" → 10]; SeedRandom[1];

w13 = w1[p3, "RandomFieldNumber" → 10];

SeedRandom[1];

w33 = w3[p3, "RandomFieldNumber" → 10];

SeedRandom[1];

w14 = w1[p4, "RandomFieldNumber" → 10];

SeedRandom[1];

w34 = w3[p4, "RandomFieldNumber" → 10]; SeedRandom[1];

w15 = w1[p5, "RandomFieldNumber" → 10];

SeedRandom[1];

w35 = w3[p5, "RandomFieldNumber" → 10];

SeedRandom[1];

w16 = w1[p6, "RandomFieldNumber" → 10];

SeedRandom[1];

w36 = w3[p6, "RandomFieldNumber" → 10];

In[ ]:= SeedRandom[1];

wLS1 = wLS[p1, "RandomFieldNumber" → 10, "Scaling" → "Log"];

SeedRandom[1];

wLS2 = wLS[p2, "RandomFieldNumber" → 10, "Scaling" → "Log"];

SeedRandom[1];

wLS3 = wLS[p3, "RandomFieldNumber" → 10, "Scaling" → "Log"];

SeedRandom[1];

wLS4 = wLS[p4, "RandomFieldNumber" → 10, "Scaling" → "Log"];

SeedRandom[1];

wLS5 = wLS[p5, "RandomFieldNumber" → 10, "Scaling" → "Log"];

SeedRandom[1];

wLS6 = wLS[p6, "RandomFieldNumber" → 10, "Scaling" → "Log"];

Power: Infinite expression
1

0
encountered.

Power: Infinite expression
1

0
encountered.

Power: Infinite expression
1

0
encountered.

General : Further output of Power::infy will be suppressed during this calculation.

Infinity : Indeterminate expression 0 ComplexInfinity encountered.

Infinity : Indeterminate expression 0 ComplexInfinity encountered.

Infinity : Indeterminate expression 0 ComplexInfinity encountered.

General : Further output of Infinity::indet will be suppressed during this calculation.

Power: Infinite expression
1

0
encountered.

Power: Infinite expression
1

0
encountered.
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Power: Infinite expression
1

0
encountered.

General : Further output of Power::infy will be suppressed during this calculation.

Infinity : Indeterminate expression 0 ComplexInfinity encountered.

Infinity : Indeterminate expression 0 ComplexInfinity encountered.

Infinity : Indeterminate expression 0 ComplexInfinity encountered.

General : Further output of Infinity::indet will be suppressed during this calculation.

Power: Infinite expression
1

0
encountered.

Power: Infinite expression
1

0
encountered.

Power: Infinite expression
1

0
encountered.

General : Further output of Power::infy will be suppressed during this calculation.

Infinity : Indeterminate expression 0 ComplexInfinity encountered.

Infinity : Indeterminate expression 0 ComplexInfinity encountered.

Infinity : Indeterminate expression 0 ComplexInfinity encountered.

General : Further output of Infinity::indet will be suppressed during this calculation.

Power: Infinite expression
1

0
encountered.

Power: Infinite expression
1

0
encountered.

Power: Infinite expression
1

0
encountered.

General : Further output of Power::infy will be suppressed during this calculation.

Infinity : Indeterminate expression 0 ComplexInfinity encountered.

Infinity : Indeterminate expression 0 ComplexInfinity encountered.

Infinity : Indeterminate expression 0 ComplexInfinity encountered.

General : Further output of Infinity::indet will be suppressed during this calculation.

Power: Infinite expression
1

0
encountered.

Power: Infinite expression
1

0
encountered.

Power: Infinite expression
1

0
encountered.

General : Further output of Power::infy will be suppressed during this calculation.

Infinity : Indeterminate expression 0 ComplexInfinity encountered.

Infinity : Indeterminate expression 0 ComplexInfinity encountered.

Infinity : Indeterminate expression 0 ComplexInfinity encountered.

General : Further output of Infinity::indet will be suppressed during this calculation.

Power: Infinite expression
1

0
encountered.

Power: Infinite expression
1

0
encountered.
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Power: Infinite expression
1

0
encountered.

General : Further output of Power::infy will be suppressed during this calculation.

Infinity : Indeterminate expression 0 ComplexInfinity encountered.

Infinity : Indeterminate expression 0 ComplexInfinity encountered.

Infinity : Indeterminate expression 0 ComplexInfinity encountered.

General : Further output of Infinity::indet will be suppressed during this calculation.

In[ ]:=

ListPlot[#, Joined → True, Frame → True, PlotRange → All] & /@

{{w11, w31}, {w12, w32}, {w13, w33}, {w14, w34}, {w15, w35}, {w16, w36}}

Out[ ]= 

0 20 40 60 80 100
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0.00
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0.04
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,

0 20 40 60 80 100

-0.02

-0.01

0.00

0.01

,

0 20 40 60 80 100

-0.02

0.00

0.02

0.04

,

0 20 40 60 80 100

-0.010

-0.005

0.000

0.005

0.010

0.015



In[ ]:=

ListPlot[Abs@MovingAverage[#, 10] & /@ {w31, w32, w33, w34, w35, w36}, Joined → True,

Frame → True, PlotRange → All, PlotLegends → Range[6], ImageSize → Large]

Out[ ]=

0 20 40 60 80

0.000

0.001

0.002

0.003
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0.005

0.006

0.007

1

2

3

4

5

6
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In[ ]:=

ListPlot[Abs@MovingAverage[#, 10] & /@ {w11, w12, w13, w14, w15, w16}, Joined → True,

Frame → True, PlotRange → All, PlotLegends → Range[6], ImageSize → Large]

Out[ ]=
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6

In[ ]:= ListPlot[1 + {wLS1, wLS2, wLS3, wLS4, wLS5, wLS6}, Joined → True,

Frame → True, PlotRange → All, PlotLegends → Range[6], ImageSize → Large]

Out[ ]=

0 20 40 60 80 100
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6
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In[ ]:= wLS1 = wLS[p1, "RandomFieldNumber" → 10, "Scaling" → "Log", "MinDistance" → 1];

Power: Infinite expression
1

0
encountered.

Power: Infinite expression
1

0
encountered.

Power: Infinite expression
1

0
encountered.

General : Further output of Power::infy will be suppressed during this calculation.

Infinity : Indeterminate expression 0 ComplexInfinity encountered.

Infinity : Indeterminate expression 0 ComplexInfinity encountered.

Infinity : Indeterminate expression 0 ComplexInfinity encountered.

General : Further output of Infinity::indet will be suppressed during this calculation.

In[ ]:= ListLogLogPlot[

Transpose[{Mean /@ Partition[Power[10, #] & /@ findDivisions[{1, 1000}, 30], 2, 1],

1 + wLS1}], PlotRange → All]

Out[ ]=

0.05 0.10 0.20 0.50

0.8

1.0

1.2

1.4
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